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Background. Prompt identification of infections is critical for slowing the spread of infectious diseases. However, diagnostic 
testing shortages are common in emerging diseases, low resource settings, and during outbreaks. This forces difficult decisions re-
garding who receives a test, often without knowing the implications of those decisions on population-level transmission dynamics. 
Clinical prediction rules (CPRs) are commonly used tools to guide clinical decisions.

Methods. Using early severe acute respiratory syndrome coronavirus disease 2 (SARS-CoV-2) as an example, we used data from 
electronic health records to develop a parsimonious 5-variable CPR to identify those who are most likely to test positive. To consider 
the implications of gains in daily case detection at the population level, we incorporated testing using the CPR into a compartmen-
talized model of SARS-CoV-2.

Results. We found that applying this CPR (area under the curve, 0.69; 95% confidence interval, .68–.70) to prioritize testing 
increased the proportion of those testing positive in settings of limited testing capacity. We found that prioritized testing led to a 
delayed and lowered infection peak (ie, “flattens the curve”), with the greatest impact at lower values of the effective reproductive 
number (such as with concurrent community mitigation efforts), and when higher proportions of infectious persons seek testing. In 
addition, prioritized testing resulted in reductions in overall infections as well as hospital and intensive care unit burden.

Conclusion. We highlight the population-level benefits of evidence-based allocation of limited diagnostic capacity.
Keywords.  clinical prediction rule; transmission dynamics; diagnostic testing.

The ongoing coronavirus disease 2019 (COVID-19) pandemic 
has demonstrated the importance of rapid identification of in-
fections in managing an epidemic, as it allows for rapid isolation 
of cases, contact tracing and quarantining of contacts, thereby 
limiting onward transmission. However, as seen at the onset 
of the current pandemic, diagnostic testing capacity is often 
limited in the emergence of novel infections, in low resource 
settings, or during outbreaks [1–3].When diagnostic testing is 
unavailable, clinical case definitions are used instead in clinical 
management and public health response [4]. The rationing of 
diagnostic testing may result in those with more severe disease 
or at higher risks of complications receiving tests, as definitive 
diagnosis is critical to guide care [5]. However, because of their 

symptoms, severely ill patients may also be less mobile, thereby 
limiting the indirect benefit of their diagnostic testing on re-
ducing onward transmission. Therefore, tools are needed to 
guide clinicians in the face of limited testing capacity.

Clinical prediction rules (CPRs) are commonly used tools 
to help to guide clinical management decisions, such as who 
should undergo testing or receive limited clinical resources. 
They provide standardization and consistency in care be-
tween physicians, as well as improved diagnostic accuracy [6]. 
Some widely used CPRs include the Centor criteria [7] for di-
agnosis and treatment of strep pharyngitis, the Ottawa ankle 
rule [8] for appropriate use of radiography in ankle trauma, and 
the CURB65 score [9] for triage of patients with pneumonia. 
Because CPRs are usually developed to improve patient care, 
their evaluation has been focused on their impact on patient-
level outcomes; the impact of CPRs on population health, in-
cluding on transmission dynamics of infectious pathogens, has 
not been widely studied.

Compartmental models such as the susceptible-exposed-
infected-removed (SEIR) model, are often used to describe 
disease dynamics through a population. They combine 
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epidemiological information (eg, transmissibility, duration of 
infectiousness, reproductive number) to provide a picture of 
the population-level disease dynamics over time [10, 11]; to our 
knowledge, compartmental models have not yet been used to 
evaluate the impact of CPRs on population-level public health 
outcomes.

Many diagnostic models for severe acute respiratory syn-
drome coronavirus disease 2 (SARS-CoV-2) now exist [12], 
each specific to a given population and time, typically focused 
on achieving optimal patient care. Using a single health system 
in Utah as a proof of concept, we developed a CPR and incor-
porated it into an SEIR model of the ongoing SARS-CoV-2 pan-
demic to evaluate the population-level impact that could have 
been achieved by using a CPR to prioritize testing early in the 
pandemic, when testing capacity was limited. Many countries, 
including the United States, have experienced shortages in diag-
nostic testing capacity, and these shortages will likely continue 
in many settings worldwide [13–15], as well as in future out-
breaks of emerging pathogens. 

Our primary objective was to measure the impact that pri-
oritized testing (using the CPR) could have had on the course 
of the SARS-CoV-2 pandemic, including the magnitude and 
timing of the outbreak peak as well as the associated impact 
on hospitalization and intensive care unit (ICU) burden. In ad-
dition, we determined the conditions (eg, test availability, test 
seeking volume, effective reproductive number) in which pri-
oritized testing would have resulted in the greatest reduction in 
SARS-CoV-2 infections and hospitalizations. Potential benefits 
of CPR-guided testing continue to be relevant for surges in the 
SARS-CoV-2 pandemic, for future emerging infections, and for 
outbreaks of common infections (eg, cholera and measles) in 
settings with limited diagnostic capacity.

MATERIALS AND METHODS

Clinical Prediction Rule

All patients tested for SARS-CoV-2 in the University of Utah 
Health (UHealth) system were eligible for our study. Data were 
gathered from a period when testing eligibility was based on 
presenting with ≥1 of the following: cough, fever, shortness of 
breath, or a high risk of exposure given recent travel or contact 
with a laboratory-confirmed case (1 March to 6 April 2020). 
We use the phrase “test eligible” to describe any person seeking 
a test who satisfies these conditions. We considered age, sex, 
state-ranked area deprivation index, smoking status, reported 
symptoms, healthcare worker status, travel history, and expo-
sure to a confirmed SARS-CoV-2 case as predictive variables. 
Random forest regression and logistic regression models were 
considered for our CPR. Our final CPR was a logistic regression 
model using the top 5 predictors to output the probability of an 
individual testing positive for SARS-CoV-2. Full details on data 

processing, the predictive variables, and the construction of the 
CPR are available in the Supplementary Materials 1. This study 
was reviewed by the University of Utah Institutional Review 
Board and determined to be exempt.

Modeling Daily Testing

We first explored the effects of prioritized versus indiscrimi-
nate testing per day (Figure 1A). On a given day, we assumed a 
certain number, Neligible, of people who seek testing and are test 
eligible (have cough, fever, shortness of breath, or known ex-
posure and seek testing). Of those who seek testing, a certain 
proportion, q, would test positive for SARS-CoV-2 if given a 
test and the rest, (1  − q), would test negative. We assumed a 
limited number, Ntests, of SARS-CoV-2 tests were available daily. 
Using simulations (details in Supplementary Materials 2), we 
measured the proportion of test-eligible, SARS-CoV-2–positive 
patients who received testing under the 2 testing regimens: pri-
oritized and indiscriminate testing.

SEIR Modeling

We also considered the effect of prioritized testing on disease 
spread in the population over longer time scales (months to 
years). We incorporated the same processes described above 
into a stochastic SEIR model parametrized for COVID-19. On 
each modeled day, we simulated the steps shown in Figure 1B, 
with parameters as in Table 1. Further simulation details are 
provided in Supplementary Materials 3.

We ran simulations assuming a total population of 3.2 mil-
lion, the approximate population of the state of Utah [16]. We 
assumed an initial condition of 15 people in the infectious class 
and all others in the susceptible class. We ran our simulations 
for a period of 2 years. For each set of parameters considered, 
we ran 1000 stochastic simulations and then calculated the 
mean value of each of the total susceptible (S + TS), exposed 
(E + TE), infectious (I + TI), and removed (R + TR) groups, as 
well as 95% prediction intervals.

We then calculated several metrics, including the timing 
of the peak of the mean infection curve; the peak value of the 
mean infection curve; and the mean total number of infections 
by the end of the simulation. These metrics allowed us to com-
pare expected outcomes between the models with indiscrimi-
nate testing and prioritized testing.

To highlight the associated implications for healthcare de-
mand, we also modeled the daily occupancy of hospital beds 
and ICU beds (details in Supplementary Materials 3) We then 
calculated the mean number of person-days (ie, the number 
of people on a given day) where demand for hospitalization 
exceeds Utah’s capacity of 4869 hospital beds and the number 
of person-days where demand for ICU beds exceeds Utah’s ca-
pacity of 687 ICU beds [17, 18]. Note that these numbers are 
for total hospital and ICU beds, not those set aside for patients 
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with COVID-19, and thus provide an upper bound for hos-
pital capacity. All analyses and simulations were conducted 
using R statistical software (version 3.6.0; [19]). All code is 
archived and available online (doi:10.5281/zenodo.3924186).

RESULTS

During the period from 1 March to 6 April 2020, a total of 1983 
patients were tested for SARS-CoV-2 at UHealth. After re-
moving observations with missing covariate data, we obtained an 

Figure 1. Effects of prioritized testing on daily testing outcomes and incorporation into a susceptible-exposed-infected-removed (SEIR) model. (A), Schematic com-
paring the testing of a subset of test-eligible people using either indiscriminate testing or prioritized testing. Red figures would test positive for severe acute respiratory 
syndrome coronavirus disease 2 (SARS-CoV-2), blue figures would test negative, and gray figures are not seeking tests. Please refer to the online version of this man-
uscript to view color figures. For prioritized testing, people are arranged and then tested according to their probability of testing positive, as determined by the clinical 
prediction rule. (B), Visual depiction of how prioritized testing was incorporated into the daily stochastic SEIR model. In step 1, people in each compartment seek testing 
with probabilities wS

 , wE
 , wI

 , and wR. Individuals waiting for test results are in state TS
 , TE

 , TI
 , or T R . In step 2, after testing, daily SEIR dynamics occur with transmission 

rate β, incubation rate σ, and removal rate γ. Those waiting for test results (states TS
 , TE

 , TI
 , and T R) have reduced transmission by a factor of η. In step 3, a proportion 

of those in states TS
 , TE

 , TI
 , and TR receive their test results, after an average delay of θ days.
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analytic sample size of 1928. Our final parsimonious  5-variable 
CPR had a cross-validated area under the curve (AUC) of 0.69 
(95% confidence interval, .68–.70). In all the results that follow, 
we used this 5-variable CPR. We explored using additional vari-
ables but found this only marginally improved predictive ability 
(AUC up to 0.71; Supplementary Figure 1 and Supplementary 
Table 2), at the expense of requiring much greater data entry 
effort by clinicians. We also considered alternative versions of 
the CPR in light of varying predictor availability in different 
clinical contexts. We explored models excluding symptoms, 
including vital signs, and including a race/ethnicity variable 
(Supplementary Table 1). Again, these did not meaningfully im-
prove predictive ability (AUC up to 0.72; Supplementary Table 
2). Finally, we explored using random forest regression to fit 
the models, but logistic regression estimates had consistently 
higher AUCs.

When comparing indiscriminate testing to prioritized 
testing, the absolute difference in the number of people infected 
with COVID-19 who were tested was greatest for intermediate 
levels of testing availability, achieving the greatest benefit to di-
sease detection when 40%–60% of test-eligible people received 
testing (vertical difference between solid lines in Figure 2). 
However, the proportional increase in the number of people 
with COVID-19 who were tested was greatest for low testing 
capacity, with the largest fold changes seen when <20% of test-
eligible people received testing (dotted line in Figure 2). For ex-
ample, if the rate of SARS-CoV-2 positivity among test-eligible 
people was 5% and there was test capacity for only 10% of those 
people, we would expect to see a nearly 3-fold increase in the 
number of patients testing positive on a given day if using pri-
oritized testing instead of indiscriminate testing (Figure 2A). 
These results were sensitive to the proportion of SARS-CoV-2–
positive patients who are test eligible, with greater differences 

between prioritized and random testing strategies seen for 
low rates of SARS-CoV-2 positivity (compare Figure 2A–2E). 
Results were robust to the total number of test-eligible persons.

Using our stochastic SEIR compartmental model, we show 
that prioritized testing delays the timing and reduces the prev-
alence at the infection peak and reduces final size of the pan-
demic (Figure 3 and Table 2). For our base parameter set, 
prioritized testing compared with indiscriminate testing re-
sulted in a 30-day delay in the timing of the infection peak and 
a 22% decrease in the peak number of infections.

The differences in the timing and numbers of infections between 
a model with prioritized versus indiscriminate testing were greatest 
for lower values of the effective reproductive number, Re (Figure 3 
and Table 2). When alternate CPRs with similar AUC values were 
considered, results varied only marginally (Supplementary Table 
2). Alternate CPRs with higher AUCs did not necessarily perform 
better on all metrics (Supplementary Table 3). Increasing the pro-
portion of infectious test-eligible people (wI) had a positive impact 
on the magnitude of the differences between the indiscriminate 
and prioritized testing models (Figure 3 and Table 2). Increasing 
the number of tests available (Ntests) increased the differences for 
low values of Ntests but then had reduced benefits for higher values 
(Table 2), consistent with Figure 2. Varying the delay in test re-
sults, θ, from 0 to 4 days, we observed only small differences in 
overall disease dynamics (Table 2). Increasing η from 0.2 to 0.5 (ie, 
with those awaiting test results isolating less effectively) did not 
notably increase the effect of varying θ (Supplementary Table 3).

Finally, we explored the impact of prioritized testing on hos-
pital and ICU bed occupancy, basing our parameters on the 
outbreak in Utah (Figure 4). We demonstrated that prioritized 
testing resulted in reductions in the number of people-days (ie, 
sum of the number of people on each day needing a hospital or 
ICU bed) where demand exceeded capacity for both hospital 

Table 1. Summary of the Parameters (and Available Sources) Used in the Stochastic Susceptible-Exposed-Infected-Removed (SEIR) Modela

Symbol Interpretation Value Source(s)
Other Values 
Consideredb

wS Proportions of individuals in susceptible, exposed,  
infected, and removed states (listed in that order) who are  
test eligible each day

0.0013 Estimated; details in Sup-
plementary Materials 4

…

wE 0.0013 …

wI 0.072 0.029–0.144

wR 0.00084 …

Ntests No. of tests available daily 1000 … 500, 3000, 
5000

σ Incubation rate 1/5.2 [20, 21] …

γ Recovery (“removal”) rate Uniform random vari-
able over 1/7 to 1/4

[22–25] …

Re Effective reproductive number 1.75 … 1.5–2.5 

β Frequency-dependent transmission rate γ . Re [26] …

θ Average test result delay 2 days … 0–4

η Reduction in transmission due to isolation 0.2 (ie, isolation reduces 
transmission by 80%)

[27] …

aFor full details on model parametrization, see Supplementary Materials 4.
bThis column shows the range of values presented for that sensitivity analysis. 
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and ICU beds (Table 2). For our base parameter set, prioritized 
testing as compared with indiscriminate testing resulted in 63% 
and 96% reductions in the numbers of people-days above hos-
pital and ICU capacity, respectively.

DISCUSSION

The availability of diagnostic testing may be limited during the 
initial phase of an outbreak with an emerging pathogen, or even 
in later phases in under-resourced settings resulting in rationing 
of diagnostic tests, which can have unintended population-level 
implications. Using SARS-CoV-2 in Utah as a proof of concept, 
we found that a CPR to prioritize testing positively affects both 
the number of laboratory-confirmed cases per day and long-
term disease dynamics when testing is scarce. We incorporated 
our model of prioritized testing into an SEIR model and showed 

the value of our CPR, with appreciable delays in the timing and 
height of the infection peak, decreases in the total number of 
infections, and reductions in the number of people-days above 
hospital and ICU capacity. This novel combination of analytic 
methods allowed us to highlight both the individual-level and 
population-level benefits of the CPR.

In spite of our CPR’s having only moderate discriminatory 
performance (AUC, 0.69), our results show that prioritizing 
diagnostic testing, even based on less-than-perfect CPRs, still 
has a meaningful impact on individual and population disease 
burden. Furthermore, future predictive models built after more 
extensive and improved data collection (eg, standardized col-
lection by clinicians over a longer time) may improve CPR per-
formance, thereby further improving the impact of prioritized 
testing on community disease burden.

prioritized testing indiscriminate testing fold change
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Figure 2. Effect of prioritized testing compared with indiscriminate testing on the proportions of severe acute respiratory syndrome coronavirus disease 2 (SARS-CoV-2)–
positive and test-eligible people who are tested. The horizontal axis allows comparison between different testing capacities. The vertical axis shows the percentages of 
SARS-CoV-2–positive and test-eligible people tested. Dotted lines denote the fold changes between the gray and green lines. Refer to the online version of this manuscript 
to view color figure. The percentages of test-eligible people who are SARS-CoV-2 positive (proportion q) are 5% in A, 25% in B, 50% in C, and 75% in D.
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When considering the individual-level impact of the CPR 
on test-eligible individuals, we found that prioritized testing 
yielded the greatest absolute gains for intermediate testing 

capacity (capacity to test 40%–60% of test-eligible people) and 
the highest proportional gains for low testing capacity. Improved 
diagnostic triage through prioritized testing leads to diagnosis 

Figure 3. Comparison of susceptible-exposed-infected-removed (SEIR) curves between models with prioritized versus indiscriminate testing for decreasing values of the ef-
fective reproductive number, Re, (A–E ), and decreasing rates of test seeking among infectious individuals, wI (F–H). Solid lines represent means of 1000 stochastic simulations 
with prioritized testing, and dotted lines, means for the model with indiscriminate testing. Shaded regions represent corresponding middle 95th percentiles of simulations. A, 
Re = 2.5. B, Re = 2.25. C, Re = 2.0. D, Re = 1.75. E, Re = 1.5. F, wI = 0.029. G, wI = 0.072. H, wI = 0.144. Note that D and G have the same parameters, but have both been included 
to show sequential change as we vary Re and wI. Refer to the online version of this manuscript for the full color figure.
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of individuals earlier in their course of disease, with potential 
for benefit through earlier initiation of therapies or medical 
monitoring, and isolation or contact-tracing precautions [28].

At the population level, we found notable impact of priori-
tized testing on COVID-19 dynamics, leading to reductions in 
infections, hospitalizations, and ICU use, as well as delaying the 
infection peak, providing more time for health systems to pre-
pare for the surge. The magnitude of this impact was sensitive 
to several key parameters. For example, when Re was lowered, 
as may happen with the introduction of other public health 
interventions such as social distancing, the effects of prioritized 
testing increased. This suggests a synergistic effect between pri-
oritized testing and other nonpharmaceutical interventions, 
since implementing prioritized testing concurrently with other 
nonpharmaceutical interventions that reduce Re, can help max-
imize potential gains. Increasing the proportion of infectious 
people who seek testing (wI) increases the effects of prioritized 
testing because of the indirect benefit (reduction of Re) of iso-
lating those individuals quickly. This may occur in populations 
with a higher proportion of symptomatic individuals, such as 
older populations [29] or those with other known risk factors 
[30]. Alternatively, the proportion of infectious individuals 
seeking testing could be increased intentionally through inter-
ventions such as contact tracing or campaigns to encourage 
test-seeking behavior.

For any given level of testing, when SARS-CoV-2 is prevalent 
and comprises a large fraction of the test-eligible population, 
either testing strategy can be impactful in reducing transmis-
sion by speeding up isolation. For any given level of testing, 
when SARS-CoV-2 comprises only a small fraction of the test-
eligible population, prioritized testing using the CPR leads to 
greater population-level benefit. Thus, in settings with both 
SARS-CoV-2 and high prevalence of influenzalike illness (eg, a 
possible fall and winter scenario), prioritized testing may be of 
increased value.

Use of prioritized testing is most useful in situations with 
limited test capacity, as the benefits of prioritized testing be-
come negligible when test demand does not exceed test avail-
ability. While some health systems had increased their testing 
capacity to meet demands, as the United States experiences a 
new surge in cases, demand for testing has continued to in-
crease. Furthermore, many countries and regions with lower 
resources may continue to have limited capacity for testing. 
Investment in a system of prioritized testing may be more 
cost-effective than the manufacturing or purchasing of more 
tests to meet demand. In addition, this approach can be useful 
in future pandemic preparedness, as a similar approach imple-
mented in a timely manner may help maximize finite testing 
resources during the initial stages of a future outbreak, until 
adequate, affordable testing is available.

Table 2. Effects of Prioritized Testing on Infection Dynamics of Susceptible-Exposed-Infected-Removed (SEIR) Model Over a Range of Parameter Valuesa

Parameter Delay in Peak Timing, d

Mean Reduction, No. (%)

Peak Height Total Infections Person-Days Above Hospital Capacity Person-Days Above ICU Capacity

Re      

 2.5 8 21 192 (7) 6478 (0) 21 619 (5) 145 802 (72)

 2.25 10 27 197 (12) 9891 (0) 35 371 (10) 138 734 (76)

 2.0 13 24 418 (14) 17 081 (1) 48 960 (20) 128 623 (83)

 1.75b 30 25 592 (22) 38 415 (2) 62 794 (63) 108 918 (96)

 1.5 36 22 855 (43) 101 938 (5) NAc 45 747 (100)

wI      

 0.029 10 12 592 (9) 29 584 (1) 27 768 (20) 108 691 (88)

 0.072b 30 25 592 (22) 38 415 (2) 62 794 (63) 108 918 (96)

 0.144 45 49 559 (74) 54 434 (2) 40 246 (100) 98 663 (100)

Ntests  

 500 21 20 832 (15) 24 751 (1) 45 297 (33) 111 538 (90)

 1000b 30 25 592 (22) 38 415 (2) 62 794 (63) 108 918 (96)

 3000 21 24 499 (46) 141 657 (6) NAc 49 329 (100)

 5000 4 2910 (8) 127 200 (7) NAc NAc

θ      

 0 25 25 734 (23) 38 314 (2) 63 136 (73) 107 319 (97)

 2b 30 25 592 (22) 38 415 (2) 62 794 (63) 108 918 (96)

 4 23 24 646 (21) 40 993 (2) 61 139 (63) 108 912 (95)

Abbreviations: θ, average test result delay (in days); ICU, intensive care unit; NA, not available; Ntests, number of tests available daily; Re, effective reproductive number; wI, proportion of 
infected individuals who are test eligible each day. 
aAll parameter values are as stated in the text, except where stated otherwise in the table. Each column compares the mean results from 1000 stochastic simulations of the model with 
prioritized testing to one with indiscriminate testing. 
bResults for the base parameter set described in the text (ie, Re = 1.75; wI = 0.072; Ntests = 1000; and θ = 2), and are repeated for reference in each subsection. 
cValues are NA where hospital or ICU demand did not exceed capacity for either the prioritized or indiscriminate testing model.
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Our study has several limitations. Our CPR was derived 
using data from a single health system servicing primarily 
non-Hispanic white patients, with test eligibility criteria that 
followed Centers for Disease Control and Prevention guidance 
from early in the pandemic; thus, as with other diagnostic CPRs 
for SARS-CoV-2 [12], our CPR should not be considered gen-
eralizable and requires validation in other settings. For different 
populations or for later periods in Utah, the CPR should be up-
dated with the most appropriate available data. Furthermore, 
specific population subgroups (eg, age and sex) may benefit 
from individualized CPRs, and this was not explored in the cur-
rent analysis. Instead, we highlight the generalizability of the 

approach we have presented and note that the individual-level 
and population-level impacts of prioritized testing are robust to 
the specific CPR used (Supplementary Table 3). 

There are also several logistical challenges. Implementation of 
such a prioritization system would require its incorporation into 
a telephone- or Web-based triage, or through a health worker–
based assessment. In addition, our model assumes that all indi-
viduals seeking testing would present at the same time. In most 
clinical settings, the implementation of such a CPR would involve 
the use of a probability threshold, set based on data from the pre-
vious day(s) and the expected number of test-eligible people. The 
optimal setting of this threshold, given stochastic testing demands 

Figure 4. Comparison of simulated demand for daily hospital and intensive care unit (ICU) occupancy between models with prioritized versus indiscriminate testing. Solid 
lines represent means of 1000 stochastic simulations with prioritized testing, and dotted lines, means for the model with indiscriminate testing. The effective reproductive 
number, Re, decreases from 2.5 to 1.5 in increments of 0.25 in plots A–E. Refer to the online version of this manuscript for the full color version of this figure.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciab177#supplementary-data
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and infection dynamics, would be an area for future exploration 
during clinical trials. We also did not consider the implications of 
the sensitivity and specificity of SARS-CoV-2 tests; low sensitivity 
and specificity in the diagnostic tests would reduce the utility of 
testing in general, and thus also of prioritized testing. Finally, our 
SEIR model was chosen as a tool to demonstrate the relative im-
pact of the CPR using a generalizable framework familiar to our 
intended audience, and it thus omitted explicit consideration of 
some SARS-CoV-2 transmission mechanisms (eg, superspreader 
events). As knowledge about any emerging pathogen continues to 
evolve, additional details that could help with detailed forecasting 
can and should be included for specific populations, appropriate 
for a specific time and place.

The limited availability of SARS-CoV-2 testing has hampered 
disease mitigation efforts in many locations. By incorporating a 
diagnostic CPR into a transmission dynamics model, we have 
demonstrated the potential efficacy of prioritized testing for de-
laying and reducing peak infections and the consequent health-
care demand. By highlighting parameter regimens in which 
these effects are greatest, we have suggested situations in which 
it may be most efficacious to use a CPR to prioritize testing of 
testing shortages caused by the emergence of a novel infectious 
disease such as SARS-CoV-2.
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